28/10/2025 17:36 1/2 Formula

Formula

In R, le formule hanno diversi usi. L'uso più comune è quello relativo all'inserimento dei modelli di relazioni fra due o più variabili.

Il caso più semplice è quello di

$$$$Y = f(X)$$$$

che corrisponde a

In Windows, la tilde ~ si inserisce con la combinazione di tasti Alt+126.

La relazione fra due variabili può essere sostanzialmente di due soli tipi:

$$\$Y = f(X1, X2)\$$$

```
Y \sim X1 + x2 # additivo

Y \sim X1 * x2 # con interazione: X1, X2, X1:X2
```

Principali operatori

+	aggiunge (gli effetti di) una variabile
-	aggiunge una variabile
*	incrocia
:	interazione
\	controllo

Esempi vari

Y ~ X1 + X2	effetti di due variabili senza interazione
	(X1, X2)
Y ~ X1 * X2	effetti di due variabili con interazione
	(X1, X2, X1:X2)
Y ~ X1 + X2 + X3	effetti di tre variabili senza interazioni
Y ~ X1 * X2 * X3	effetti di tre variabili con tutte le interazioni
Y ~ X1 + X2 * X3	effetti di tre variabili, ma interazioni solo fra X2 e X3
	(X1, X2, X3, X2:X3)
Y ~ X1 + X2 / X3	effetti di due variabili, e interazioni solo fra X2 e X3
	(X1, X2, X2:X3)

	07/00		
Last undate:	27/03/	2025	16:31

$Y \sim (X1 + X2 + X3)^2$	effetti di tre variabili, con interazioni di secondo grado
	(X1, X2, X3, X1:X2, X1:X2, X2:X3)
Y ~ X1 * X2 + X3 * X4	Interazioni solo fra X1 e X2, X3 e X4
	(X1, X2, X3, X4, X1:X2, X3:X4)
Y ~ poly(X1, 2)	$\Lambda Y = X_1^2$ polinomiale ortogonale
$Y \sim X1 + I(X1^2)$	$\Lambda Y = X_1^2$ polinomiale

Ad esempio, inserendo il modello nella forma y \sim A * B * C + C * D, la tabella dell'Anova risultante sarà:

Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F)Α 1 0.23 0.233 0.1404 0.708017 В 2 5.81 2.906 1.7471 0.175156 2 C 207.56 103.782 62.4030 < 2.2e-16 D 2 2.53 1.265 0.7607 0.467790 2 A:B 2.36 1.180 0.7094 0.492348 2 10.26 5.131 3.0852 0.046441 B:C A:C 4 11.73 2.932 1.7631 0.134677 C:D4 26.76 6.690 4.0226 0.003147 1.685 A:B:C 6.74 1.0130 0.399934 Residuals 605 1006.18 1.663

Vedi: Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis of Variance. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(3), 392–399.

Concetti di base, Coding

From

https://www.agnesevardanega.eu/wiki/ - Ricerca Sociale con R

Permanent link:

https://www.agnesevardanega.eu/wiki/r/concetti_di_base/formula

Last update: **27/03/2025 16:31**

